The Development of Silicon Nanocomposite Materials for Li-Ion Secondary Batteries
نویسندگان
چکیده
With the rapid progress and wide application of Li-ion batteries, commercial graphite anode can not satisfy the increasing demand for higher capacities. Like other anode materials with higher capacities, silicon materials as anodes remain serious problems for their large volume variations and poor cyclabilities during cycling. One of key problem is how to stabilize the performances of Si anode materials. Various influencing factors of volume variation of silicon anode materials have been reviewed, which consist of discharging voltage, amorphous or crystalline type, tube or pore microstructure, interlayer adhesion, buffering and protective layer materials and conductive agents. Another hot issue is on the preparation methods for silicon anode materials with high performance. It covers not only the technics of high purity silicon materials, including the predominant Siemens process of electronic-grade silicon, but also the techniques of silicon film anodes, which consists of butyl-capped silicon precursor, the template methods of nanostructure, magnetron sputtering, ball-milling. From the screening of existing silicon anode materials in the literatures, the preparation methods for promising Si anode materials and their prospects have been offered.
منابع مشابه
Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion ...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملFacile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries.
Silicon nanoparticles have been successfully inserted into graphene sheets via a novel method combining freeze-drying and thermal reduction. The as-obtained Si/graphene nanocomposite exhibits remarkably enhanced cycling performance and rate performance compared with bare Si nanoparticles for lithium-ion batteries.
متن کاملNew nanostructured Li2S/silicon rechargeable battery with high specific energy.
Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, ...
متن کاملAn Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کامل